ResNetを実装してみました。
どうも、Guchinakaです。お久しぶりです。
いきなりのカミングアウトすみません。
研究関連でResNetを実装する機会がありましたので、なんとなーく更新しとうと思いました。
Residual neural network
残渣ニューラルネットワークのことですね。詳しいことは、また今度書きたいとお思います。
こんな感じみたいですわー。↓
__________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_9 (InputLayer) [(None, 256, 256, 1) 0 __________________________________________________________________________________________________ conv1_pad (ZeroPadding2D) (None, 262, 262, 1) 0 input_9[0][0] __________________________________________________________________________________________________ conv1_conv (Conv2D) (None, 128, 128, 64) 3200 conv1_pad[0][0] __________________________________________________________________________________________________ conv1_bn (BatchNormalization) (None, 128, 128, 64) 256 conv1_conv[0][0] __________________________________________________________________________________________________ conv1_relu (Activation) (None, 128, 128, 64) 0 conv1_bn[0][0] __________________________________________________________________________________________________ pool1_pad (ZeroPadding2D) (None, 130, 130, 64) 0 conv1_relu[0][0] __________________________________________________________________________________________________ pool1_pool (MaxPooling2D) (None, 64, 64, 64) 0 pool1_pad[0][0] __________________________________________________________________________________________________ conv2_block1_1_conv (Conv2D) (None, 64, 64, 64) 4160 pool1_pool[0][0] __________________________________________________________________________________________________ conv2_block1_1_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block1_1_conv[0][0] __________________________________________________________________________________________________ conv2_block1_1_relu (Activation (None, 64, 64, 64) 0 conv2_block1_1_bn[0][0] __________________________________________________________________________________________________ conv2_block1_2_conv (Conv2D) (None, 64, 64, 64) 36928 conv2_block1_1_relu[0][0] __________________________________________________________________________________________________ conv2_block1_2_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block1_2_conv[0][0] __________________________________________________________________________________________________ conv2_block1_2_relu (Activation (None, 64, 64, 64) 0 conv2_block1_2_bn[0][0] __________________________________________________________________________________________________ conv2_block1_0_conv (Conv2D) (None, 64, 64, 256) 16640 pool1_pool[0][0] __________________________________________________________________________________________________ conv2_block1_3_conv (Conv2D) (None, 64, 64, 256) 16640 conv2_block1_2_relu[0][0] __________________________________________________________________________________________________ conv2_block1_0_bn (BatchNormali (None, 64, 64, 256) 1024 conv2_block1_0_conv[0][0] __________________________________________________________________________________________________ conv2_block1_3_bn (BatchNormali (None, 64, 64, 256) 1024 conv2_block1_3_conv[0][0] __________________________________________________________________________________________________ conv2_block1_add (Add) (None, 64, 64, 256) 0 conv2_block1_0_bn[0][0] conv2_block1_3_bn[0][0] __________________________________________________________________________________________________ conv2_block1_out (Activation) (None, 64, 64, 256) 0 conv2_block1_add[0][0] __________________________________________________________________________________________________ conv2_block2_1_conv (Conv2D) (None, 64, 64, 64) 16448 conv2_block1_out[0][0] __________________________________________________________________________________________________ conv2_block2_1_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block2_1_conv[0][0] __________________________________________________________________________________________________ conv2_block2_1_relu (Activation (None, 64, 64, 64) 0 conv2_block2_1_bn[0][0] __________________________________________________________________________________________________ conv2_block2_2_conv (Conv2D) (None, 64, 64, 64) 36928 conv2_block2_1_relu[0][0] __________________________________________________________________________________________________ conv2_block2_2_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block2_2_conv[0][0] __________________________________________________________________________________________________ conv2_block2_2_relu (Activation (None, 64, 64, 64) 0 conv2_block2_2_bn[0][0] __________________________________________________________________________________________________ conv2_block2_3_conv (Conv2D) (None, 64, 64, 256) 16640 conv2_block2_2_relu[0][0] __________________________________________________________________________________________________ conv2_block2_3_bn (BatchNormali (None, 64, 64, 256) 1024 conv2_block2_3_conv[0][0] __________________________________________________________________________________________________ conv2_block2_add (Add) (None, 64, 64, 256) 0 conv2_block1_out[0][0] conv2_block2_3_bn[0][0] __________________________________________________________________________________________________ conv2_block2_out (Activation) (None, 64, 64, 256) 0 conv2_block2_add[0][0] __________________________________________________________________________________________________ conv2_block3_1_conv (Conv2D) (None, 64, 64, 64) 16448 conv2_block2_out[0][0] __________________________________________________________________________________________________ conv2_block3_1_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block3_1_conv[0][0] __________________________________________________________________________________________________ conv2_block3_1_relu (Activation (None, 64, 64, 64) 0 conv2_block3_1_bn[0][0] __________________________________________________________________________________________________ conv2_block3_2_conv (Conv2D) (None, 64, 64, 64) 36928 conv2_block3_1_relu[0][0] __________________________________________________________________________________________________ conv2_block3_2_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block3_2_conv[0][0] __________________________________________________________________________________________________ conv2_block3_2_relu (Activation (None, 64, 64, 64) 0 conv2_block3_2_bn[0][0] __________________________________________________________________________________________________ conv2_block3_3_conv (Conv2D) (None, 64, 64, 256) 16640 conv2_block3_2_relu[0][0] __________________________________________________________________________________________________ conv2_block3_3_bn (BatchNormali (None, 64, 64, 256) 1024 conv2_block3_3_conv[0][0] __________________________________________________________________________________________________ conv2_block3_add (Add) (None, 64, 64, 256) 0 conv2_block2_out[0][0] conv2_block3_3_bn[0][0] __________________________________________________________________________________________________ conv2_block3_out (Activation) (None, 64, 64, 256) 0 conv2_block3_add[0][0] __________________________________________________________________________________________________ conv3_block1_1_conv (Conv2D) (None, 32, 32, 128) 32896 conv2_block3_out[0][0] __________________________________________________________________________________________________ conv3_block1_1_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block1_1_conv[0][0] __________________________________________________________________________________________________ conv3_block1_1_relu (Activation (None, 32, 32, 128) 0 conv3_block1_1_bn[0][0] __________________________________________________________________________________________________ conv3_block1_2_conv (Conv2D) (None, 32, 32, 128) 147584 conv3_block1_1_relu[0][0] __________________________________________________________________________________________________ conv3_block1_2_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block1_2_conv[0][0] __________________________________________________________________________________________________ conv3_block1_2_relu (Activation (None, 32, 32, 128) 0 conv3_block1_2_bn[0][0] __________________________________________________________________________________________________ conv3_block1_0_conv (Conv2D) (None, 32, 32, 512) 131584 conv2_block3_out[0][0] __________________________________________________________________________________________________ conv3_block1_3_conv (Conv2D) (None, 32, 32, 512) 66048 conv3_block1_2_relu[0][0] __________________________________________________________________________________________________ conv3_block1_0_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block1_0_conv[0][0] __________________________________________________________________________________________________ conv3_block1_3_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block1_3_conv[0][0] __________________________________________________________________________________________________ conv3_block1_add (Add) (None, 32, 32, 512) 0 conv3_block1_0_bn[0][0] conv3_block1_3_bn[0][0] __________________________________________________________________________________________________ conv3_block1_out (Activation) (None, 32, 32, 512) 0 conv3_block1_add[0][0] __________________________________________________________________________________________________ conv3_block2_1_conv (Conv2D) (None, 32, 32, 128) 65664 conv3_block1_out[0][0] __________________________________________________________________________________________________ conv3_block2_1_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block2_1_conv[0][0] __________________________________________________________________________________________________ conv3_block2_1_relu (Activation (None, 32, 32, 128) 0 conv3_block2_1_bn[0][0] __________________________________________________________________________________________________ conv3_block2_2_conv (Conv2D) (None, 32, 32, 128) 147584 conv3_block2_1_relu[0][0] __________________________________________________________________________________________________ conv3_block2_2_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block2_2_conv[0][0] __________________________________________________________________________________________________ conv3_block2_2_relu (Activation (None, 32, 32, 128) 0 conv3_block2_2_bn[0][0] __________________________________________________________________________________________________ conv3_block2_3_conv (Conv2D) (None, 32, 32, 512) 66048 conv3_block2_2_relu[0][0] __________________________________________________________________________________________________ conv3_block2_3_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block2_3_conv[0][0] __________________________________________________________________________________________________ conv3_block2_add (Add) (None, 32, 32, 512) 0 conv3_block1_out[0][0] conv3_block2_3_bn[0][0] __________________________________________________________________________________________________ conv3_block2_out (Activation) (None, 32, 32, 512) 0 conv3_block2_add[0][0] __________________________________________________________________________________________________ conv3_block3_1_conv (Conv2D) (None, 32, 32, 128) 65664 conv3_block2_out[0][0] __________________________________________________________________________________________________ conv3_block3_1_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block3_1_conv[0][0] __________________________________________________________________________________________________ conv3_block3_1_relu (Activation (None, 32, 32, 128) 0 conv3_block3_1_bn[0][0] __________________________________________________________________________________________________ conv3_block3_2_conv (Conv2D) (None, 32, 32, 128) 147584 conv3_block3_1_relu[0][0] __________________________________________________________________________________________________ conv3_block3_2_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block3_2_conv[0][0] __________________________________________________________________________________________________ conv3_block3_2_relu (Activation (None, 32, 32, 128) 0 conv3_block3_2_bn[0][0] __________________________________________________________________________________________________ conv3_block3_3_conv (Conv2D) (None, 32, 32, 512) 66048 conv3_block3_2_relu[0][0] __________________________________________________________________________________________________ conv3_block3_3_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block3_3_conv[0][0] __________________________________________________________________________________________________ conv3_block3_add (Add) (None, 32, 32, 512) 0 conv3_block2_out[0][0] conv3_block3_3_bn[0][0] __________________________________________________________________________________________________ conv3_block3_out (Activation) (None, 32, 32, 512) 0 conv3_block3_add[0][0] __________________________________________________________________________________________________ conv3_block4_1_conv (Conv2D) (None, 32, 32, 128) 65664 conv3_block3_out[0][0] __________________________________________________________________________________________________ conv3_block4_1_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block4_1_conv[0][0] __________________________________________________________________________________________________ conv3_block4_1_relu (Activation (None, 32, 32, 128) 0 conv3_block4_1_bn[0][0] __________________________________________________________________________________________________ conv3_block4_2_conv (Conv2D) (None, 32, 32, 128) 147584 conv3_block4_1_relu[0][0] __________________________________________________________________________________________________ conv3_block4_2_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block4_2_conv[0][0] __________________________________________________________________________________________________ conv3_block4_2_relu (Activation (None, 32, 32, 128) 0 conv3_block4_2_bn[0][0] __________________________________________________________________________________________________ conv3_block4_3_conv (Conv2D) (None, 32, 32, 512) 66048 conv3_block4_2_relu[0][0] __________________________________________________________________________________________________ conv3_block4_3_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block4_3_conv[0][0] __________________________________________________________________________________________________ conv3_block4_add (Add) (None, 32, 32, 512) 0 conv3_block3_out[0][0] conv3_block4_3_bn[0][0] __________________________________________________________________________________________________ conv3_block4_out (Activation) (None, 32, 32, 512) 0 conv3_block4_add[0][0] __________________________________________________________________________________________________ conv4_block1_1_conv (Conv2D) (None, 16, 16, 256) 131328 conv3_block4_out[0][0] __________________________________________________________________________________________________ conv4_block1_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block1_1_conv[0][0] __________________________________________________________________________________________________ conv4_block1_1_relu (Activation (None, 16, 16, 256) 0 conv4_block1_1_bn[0][0] __________________________________________________________________________________________________ conv4_block1_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block1_1_relu[0][0] __________________________________________________________________________________________________ conv4_block1_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block1_2_conv[0][0] __________________________________________________________________________________________________ conv4_block1_2_relu (Activation (None, 16, 16, 256) 0 conv4_block1_2_bn[0][0] __________________________________________________________________________________________________ conv4_block1_0_conv (Conv2D) (None, 16, 16, 1024) 525312 conv3_block4_out[0][0] __________________________________________________________________________________________________ conv4_block1_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block1_2_relu[0][0] __________________________________________________________________________________________________ conv4_block1_0_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block1_0_conv[0][0] __________________________________________________________________________________________________ conv4_block1_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block1_3_conv[0][0] __________________________________________________________________________________________________ conv4_block1_add (Add) (None, 16, 16, 1024) 0 conv4_block1_0_bn[0][0] conv4_block1_3_bn[0][0] __________________________________________________________________________________________________ conv4_block1_out (Activation) (None, 16, 16, 1024) 0 conv4_block1_add[0][0] __________________________________________________________________________________________________ conv4_block2_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block1_out[0][0] __________________________________________________________________________________________________ conv4_block2_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block2_1_conv[0][0] __________________________________________________________________________________________________ conv4_block2_1_relu (Activation (None, 16, 16, 256) 0 conv4_block2_1_bn[0][0] __________________________________________________________________________________________________ conv4_block2_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block2_1_relu[0][0] __________________________________________________________________________________________________ conv4_block2_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block2_2_conv[0][0] __________________________________________________________________________________________________ conv4_block2_2_relu (Activation (None, 16, 16, 256) 0 conv4_block2_2_bn[0][0] __________________________________________________________________________________________________ conv4_block2_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block2_2_relu[0][0] __________________________________________________________________________________________________ conv4_block2_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block2_3_conv[0][0] __________________________________________________________________________________________________ conv4_block2_add (Add) (None, 16, 16, 1024) 0 conv4_block1_out[0][0] conv4_block2_3_bn[0][0] __________________________________________________________________________________________________ conv4_block2_out (Activation) (None, 16, 16, 1024) 0 conv4_block2_add[0][0] __________________________________________________________________________________________________ conv4_block3_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block2_out[0][0] __________________________________________________________________________________________________ conv4_block3_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block3_1_conv[0][0] __________________________________________________________________________________________________ conv4_block3_1_relu (Activation (None, 16, 16, 256) 0 conv4_block3_1_bn[0][0] __________________________________________________________________________________________________ conv4_block3_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block3_1_relu[0][0] __________________________________________________________________________________________________ conv4_block3_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block3_2_conv[0][0] __________________________________________________________________________________________________ conv4_block3_2_relu (Activation (None, 16, 16, 256) 0 conv4_block3_2_bn[0][0] __________________________________________________________________________________________________ conv4_block3_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block3_2_relu[0][0] __________________________________________________________________________________________________ conv4_block3_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block3_3_conv[0][0] __________________________________________________________________________________________________ conv4_block3_add (Add) (None, 16, 16, 1024) 0 conv4_block2_out[0][0] conv4_block3_3_bn[0][0] __________________________________________________________________________________________________ conv4_block3_out (Activation) (None, 16, 16, 1024) 0 conv4_block3_add[0][0] __________________________________________________________________________________________________ conv4_block4_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block3_out[0][0] __________________________________________________________________________________________________ conv4_block4_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block4_1_conv[0][0] __________________________________________________________________________________________________ conv4_block4_1_relu (Activation (None, 16, 16, 256) 0 conv4_block4_1_bn[0][0] __________________________________________________________________________________________________ conv4_block4_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block4_1_relu[0][0] __________________________________________________________________________________________________ conv4_block4_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block4_2_conv[0][0] __________________________________________________________________________________________________ conv4_block4_2_relu (Activation (None, 16, 16, 256) 0 conv4_block4_2_bn[0][0] __________________________________________________________________________________________________ conv4_block4_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block4_2_relu[0][0] __________________________________________________________________________________________________ conv4_block4_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block4_3_conv[0][0] __________________________________________________________________________________________________ conv4_block4_add (Add) (None, 16, 16, 1024) 0 conv4_block3_out[0][0] conv4_block4_3_bn[0][0] __________________________________________________________________________________________________ conv4_block4_out (Activation) (None, 16, 16, 1024) 0 conv4_block4_add[0][0] __________________________________________________________________________________________________ conv4_block5_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block4_out[0][0] __________________________________________________________________________________________________ conv4_block5_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block5_1_conv[0][0] __________________________________________________________________________________________________ conv4_block5_1_relu (Activation (None, 16, 16, 256) 0 conv4_block5_1_bn[0][0] __________________________________________________________________________________________________ conv4_block5_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block5_1_relu[0][0] __________________________________________________________________________________________________ conv4_block5_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block5_2_conv[0][0] __________________________________________________________________________________________________ conv4_block5_2_relu (Activation (None, 16, 16, 256) 0 conv4_block5_2_bn[0][0] __________________________________________________________________________________________________ conv4_block5_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block5_2_relu[0][0] __________________________________________________________________________________________________ conv4_block5_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block5_3_conv[0][0] __________________________________________________________________________________________________ conv4_block5_add (Add) (None, 16, 16, 1024) 0 conv4_block4_out[0][0] conv4_block5_3_bn[0][0] __________________________________________________________________________________________________ conv4_block5_out (Activation) (None, 16, 16, 1024) 0 conv4_block5_add[0][0] __________________________________________________________________________________________________ conv4_block6_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block5_out[0][0] __________________________________________________________________________________________________ conv4_block6_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block6_1_conv[0][0] __________________________________________________________________________________________________ conv4_block6_1_relu (Activation (None, 16, 16, 256) 0 conv4_block6_1_bn[0][0] __________________________________________________________________________________________________ conv4_block6_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block6_1_relu[0][0] __________________________________________________________________________________________________ conv4_block6_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block6_2_conv[0][0] __________________________________________________________________________________________________ conv4_block6_2_relu (Activation (None, 16, 16, 256) 0 conv4_block6_2_bn[0][0] __________________________________________________________________________________________________ conv4_block6_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block6_2_relu[0][0] __________________________________________________________________________________________________ conv4_block6_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block6_3_conv[0][0] __________________________________________________________________________________________________ conv4_block6_add (Add) (None, 16, 16, 1024) 0 conv4_block5_out[0][0] conv4_block6_3_bn[0][0] __________________________________________________________________________________________________ conv4_block6_out (Activation) (None, 16, 16, 1024) 0 conv4_block6_add[0][0] __________________________________________________________________________________________________ conv5_block1_1_conv (Conv2D) (None, 8, 8, 512) 524800 conv4_block6_out[0][0] __________________________________________________________________________________________________ conv5_block1_1_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block1_1_conv[0][0] __________________________________________________________________________________________________ conv5_block1_1_relu (Activation (None, 8, 8, 512) 0 conv5_block1_1_bn[0][0] __________________________________________________________________________________________________ conv5_block1_2_conv (Conv2D) (None, 8, 8, 512) 2359808 conv5_block1_1_relu[0][0] __________________________________________________________________________________________________ conv5_block1_2_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block1_2_conv[0][0] __________________________________________________________________________________________________ conv5_block1_2_relu (Activation (None, 8, 8, 512) 0 conv5_block1_2_bn[0][0] __________________________________________________________________________________________________ conv5_block1_0_conv (Conv2D) (None, 8, 8, 2048) 2099200 conv4_block6_out[0][0] __________________________________________________________________________________________________ conv5_block1_3_conv (Conv2D) (None, 8, 8, 2048) 1050624 conv5_block1_2_relu[0][0] __________________________________________________________________________________________________ conv5_block1_0_bn (BatchNormali (None, 8, 8, 2048) 8192 conv5_block1_0_conv[0][0] __________________________________________________________________________________________________ conv5_block1_3_bn (BatchNormali (None, 8, 8, 2048) 8192 conv5_block1_3_conv[0][0] __________________________________________________________________________________________________ conv5_block1_add (Add) (None, 8, 8, 2048) 0 conv5_block1_0_bn[0][0] conv5_block1_3_bn[0][0] __________________________________________________________________________________________________ conv5_block1_out (Activation) (None, 8, 8, 2048) 0 conv5_block1_add[0][0] __________________________________________________________________________________________________ conv5_block2_1_conv (Conv2D) (None, 8, 8, 512) 1049088 conv5_block1_out[0][0] __________________________________________________________________________________________________ conv5_block2_1_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block2_1_conv[0][0] __________________________________________________________________________________________________ conv5_block2_1_relu (Activation (None, 8, 8, 512) 0 conv5_block2_1_bn[0][0] __________________________________________________________________________________________________ conv5_block2_2_conv (Conv2D) (None, 8, 8, 512) 2359808 conv5_block2_1_relu[0][0] __________________________________________________________________________________________________ conv5_block2_2_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block2_2_conv[0][0] __________________________________________________________________________________________________ conv5_block2_2_relu (Activation (None, 8, 8, 512) 0 conv5_block2_2_bn[0][0] __________________________________________________________________________________________________ conv5_block2_3_conv (Conv2D) (None, 8, 8, 2048) 1050624 conv5_block2_2_relu[0][0] __________________________________________________________________________________________________ conv5_block2_3_bn (BatchNormali (None, 8, 8, 2048) 8192 conv5_block2_3_conv[0][0] __________________________________________________________________________________________________ conv5_block2_add (Add) (None, 8, 8, 2048) 0 conv5_block1_out[0][0] conv5_block2_3_bn[0][0] __________________________________________________________________________________________________ conv5_block2_out (Activation) (None, 8, 8, 2048) 0 conv5_block2_add[0][0] __________________________________________________________________________________________________ conv5_block3_1_conv (Conv2D) (None, 8, 8, 512) 1049088 conv5_block2_out[0][0] __________________________________________________________________________________________________ conv5_block3_1_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block3_1_conv[0][0] __________________________________________________________________________________________________ conv5_block3_1_relu (Activation (None, 8, 8, 512) 0 conv5_block3_1_bn[0][0] __________________________________________________________________________________________________ conv5_block3_2_conv (Conv2D) (None, 8, 8, 512) 2359808 conv5_block3_1_relu[0][0] __________________________________________________________________________________________________ conv5_block3_2_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block3_2_conv[0][0] __________________________________________________________________________________________________ conv5_block3_2_relu (Activation (None, 8, 8, 512) 0 conv5_block3_2_bn[0][0] __________________________________________________________________________________________________ conv5_block3_3_conv (Conv2D) (None, 8, 8, 2048) 1050624 conv5_block3_2_relu[0][0] __________________________________________________________________________________________________ conv5_block3_3_bn (BatchNormali (None, 8, 8, 2048) 8192 conv5_block3_3_conv[0][0] __________________________________________________________________________________________________ conv5_block3_add (Add) (None, 8, 8, 2048) 0 conv5_block2_out[0][0] conv5_block3_3_bn[0][0] __________________________________________________________________________________________________ conv5_block3_out (Activation) (None, 8, 8, 2048) 0 conv5_block3_add[0][0] __________________________________________________________________________________________________ global_average_pooling2d_8 (Glo (None, 2048) 0 conv5_block3_out[0][0] __________________________________________________________________________________________________ dropout_32 (Dropout) (None, 2048) 0 global_average_pooling2d_8[0][0] __________________________________________________________________________________________________ dense_32 (Dense) (None, 2) 4098 dropout_32[0][0] ==================================================================================================
長いですねー。適当な記事ですみません。